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Abstract:   In current world scenario, storing data, audio, image and video is big challenging task. By reducing the 

dimensionality of the data from the original dimension to lower dimension leads to good visualization, less computation 

time and faster execution time. Lot of dimensionality reduction techniques exists and classified into two categories’ 

namely feature selection and feature extraction. Feature selection is removing of irrelevant and redundant data thereby 

reducing in computation time and increasing accuracy. Feature extraction or projection is mapping higher dimensionality 

data into lower dimensional data. However, there's no specific review that specialize in the supervised dimension 

reduction problem. Considering classification or regression as being the most goal of dimension reduction, the aim of this 

paper is to summarize and organize the present developments within the field into three main classes: PCA-based, Non-

negative Matrix Factorization (NMF)-based, and manifold-based supervised dimensionality reduction methods. 

Moreover, we outline a dozen open problems which will be further explored to advance the event of this subject. 
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I. INTRODUCTION 

 

Large scale data with higher dimension is a big challenging problem in machine learning. High-dimensional 

data are quite common in this world. Popular dimension reduction methods belong to the unsupervised learning 

techniques because there is no label information is employed. The other two traditional machine learning categories are 

supervised learning and semi-supervised learning, which use all or a neighborhood of the label information. In most real 

applications, dimensionality reduction is simply an intermediate step towards the ultimate goals, like classification or 

regression [1-6]. Feature selection or feature extraction methods are first used to category the data into low-dimensional 

text representation, and then, a classifier helps to make a prediction [7, 8]. Lacking supervision, some important 

words could also be filtered before training the classifier, which affects the ultimate performance [9]. To manage the 

problem and to help the growing needs supervised dimensionality reduction techniques are deployed. 

The Supervised dimensionality reduction methods are classified into three classes: PCA-based, NMF-based, 

and manifold-based dimensionality reduction methods. PCA-based and NMF-based methods are linear methods 

Manifold-based methods are non-linear methods. By studying the label information, we find that there are two main 

ways: LDA and directly integrating the loss function for classification or regression. To use the loss function directly for 

classification or regression, the commonly-used loss functions are mainly adopted in Support Vector Machine (SVM), 

logistic regression, linear regression, polynomial regression, etc. We will elaborate on them within the subsequent 

sections. 

In the recent years many dimensionality reduction techniques where extensively explored, and several reviews 

[10–17] on dimension reduction where analyzed. We provide a prototype to systematically categorize the methods and 

helps to list the important open problems which are occurs frequently for the further development of this topic. As 

feature extraction is very popular when compared to the feature selection, in our paper, we mainly specialize in feature 

extraction for supervised learning. With reference to feature selection for supervised learning, we refer the reader to 

[18]. 

  In the other part this paper, we offer a proper definition and the taxonomy of supervised dimensionality 

reduction in Section 2. In Section 3, we describe supervised dimensionality reduction methods and their three 

classes in detail. Section 4 projects the real-world applications areas where the supervised dimensionality reduction 

methods are implemented. In Section 5, several promising future directions are exploration. Finally, conclusion 

explained in the in Section 6. 
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II. RELATED WORKS 

A. Definition and Taxonomy 

To obtain an entire picture of the present supervised dimensionality reduction methods, we offer Figure 1 to point out the 

taxonomy of supervised and semi-supervised dimensionality reduction techniques. 

 

  

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. The taxonomy of supervised dimensionality reduction methods. 

 

For simplicity, afterwards, we'll just use supervised dimensionality reduction to incorporate supervised and semi-

supervised dimensionality reduction. Supervised dimensionality reduction methods can be divided into three classes: 

PCA-based, NMF-based, and manifold-based methods.  

 

B. Supervised Dimensionality Reduction Technique 

 

1)  PCA-Based Supervised Dimensionality Reduction:  

 

 PCA are often considered as one of very popular dimension reduction technique which helps to learn the 

orthogonal projection of the original data onto a lower dimensional linear space, known as the principal subspace; such 

that the variance of the projected data is maximized [19]. PCA is a statistical based approach which helps to transforms a 

set of correlated variables into linearly uncorrelated variables. Assume that O observations in the data and variables are p, 

number of principal components is min (O-1, p). The steps involved in principal component analysis is 1) Formation of 

mean centered data 2) Normalize the data 3) Eigen vector and Eigen value calculation 4) Formation of principal 

components. 

 

2) NMF-Based Supervised Dimensionality Reduction: 

 

  It factors the non-negative into products of two non-negative matrices. Let the matrix be A. The value of A will 

be WH, where W and H are non-negative matrices. WH is lower approximation to A. Initially random values are given 

for W and H will be in the form of interactive method, W and H values are generated. In some cases, the algorithm 

converges lower than k. This is often an oblong matrix. The overall value is the product of W and H which is adequate 

to A. Non-negative matrix factorization is originally referred to as non-negative rank factorization or matrix 

factorization. NMF are often classified into two types. They are optimization-based methods and geometry-based 

methods. NMF may be a non-supervised technique which will be used for future learning. To quantify the 

approximation error, normally cost functions are used. NMF is that the one among the important methods to 

approximate the measured data. In document analysis, each document is stored as vector. Each element of vector 

indicates count of a term appearing that document. In image processing, each vector of matrix represents a picture. A 

matrix represents a set of images. Each element of the vector represents color of pixel. NMF extracts facial parts from 

face images. Some of the real time application of NMF is Face and visual perception. Direct supervised NMF and 

Discriminative NMF are its basic types. 

 

3)    Manifold-Based Supervised Dimensionality Reduction: 

High-dimensional data points in manifold-Based methods will have a low-dimensional manifold, and therefore 

the task of manifold learning is to uncover this low-dimensional manifold. Manifold-based dimensionality reduction 

methods exploit the geometric properties of the manifold on which the information points are speculated to lie. The 

basic types of manifold-based dimensionality reduction methods include Isomap [52], Locally Linear Embedding 

Supervised dimensionality 

Reduction 

PCA-Based NMF-Based Manifold-based 

Direct Supervised NMF Discriminative NMF 
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(LLE) [53], and Laplacian Eigenmap (LE) [54]. LLE-Based Supervised dimensionality Reduction 

 

C. Discussion 

         Supervised NMF has been successfully applied in computer vision and speech recognition, because 

NMF features a excellent interpretability due to its non-negativity property. In classification and regression 

problems PCA-based methods are widely used, but the performance of NMF-based methods is not so competitive 

in the computer vision and speech recognition fields. Manifold-based methods assume that the information points 

are located in a low-dimensional manifold or each data that are often represented as the linear combination of its 

neighbors. Manifold-based methods are normally time consuming because of the inverse of the Laplacian matrix. 

In summary, based on the performance and usage, the three classes of supervised or semi-supervised methods are 

listed from top to bottom as PCA-based methods, manifold-based methods, and then, NMF-based methods. 

 

III. APPLICATION 

 

Supervised dimensionality reduction has been successfully applied to a wide range of applications including 

computer vision, biomedical informatics, speech recognition, visualization, etc. 

 

A. Computer Vision 

 

 From the inception of NMF [27], it had been effectively applied to face recognition as it has the ability to 

supply interpretable bases. Face recognition is one of better example application for supervised NMF. 

Discriminative NMFs [46, 47, 69] are successors of supervised NMF methods at face recognition, and then, 

many direct NMF methods [35–37, 70] also demonstrated superior performance in this task. 

 

B. Biomedical Informatics: 

 

  In bioinformatics, especially inside the subject of genetics, due to the massive amount of gene markers, 

it's far tough to become aware of the genuine gene marker had results in a sure ailment directly. As excessive 

dimension and classification, need to be concurrently tackled, supervised dimensionality reduction becomes the 

proper preference. Zhang. [74] Proposed a most cancers classification semi-supervised projective NMF technique 

which is very useful to classes the datasets. Supervised PCA [76] and supervised specific PCA [77,78] was 

correctly carried out to gene set analysis and genome-wide affiliation analyses respectively. Moreover, 

supervised probabilistic PCA [26] done thoroughly in gene category.  In clinical informatics, with the fast 

improvement of scientific devices, a spread of functions is gathered in actual packages. How to identify the 

effective features certainly diseases are difficult and supervised size reduction becomes an honest preference to 

solve this problem. Chao. [38] Proposed a supervised NMF with the aid of combing NMF which facilitates to 

enhance the ICU mortality prediction performance. Fuse. [79] Combined NMF and SVM helps to diagnose 

Alzheimer’s disease and obtained an advanced performance. Supervised PCA [20] has been effici ently utilized in 

DNA micro array information analysis and cancer diagnosis.  Finally, we got here to know that the method of 

knowledge discovery in biomedical informatics is broadly speaking done by using biomedical domain experts. 

This is broadly speaking due to the excessive complexity of the research domain, which requires deep domain 

information. At an equivalent time, these domain experts face most important boundaries in managing and 

analyzing their excessive-dimensional, sophisticated research records. A latest work [80] outlined that ontology -

centered information infrastructure for studies project, which actively helps the clinical domain professionals in 

data acquisition, processing, and exploration, are frequently very beneficial here.  

 

C. Speech Recognition: 

 

  Speech popularity is some other successful application of NMF. Lee [51] Used discriminative NMF to 

categorize the emotional difference in speech. Weninger. [81] solved the audio supply separation with supervised 

NMF, even as Nakajima. [82] and Kitamura. [83] Followed supervised NMF for music sign separation. Although 

there exists a quantity of a success programs in speech recognition, extra attempts can be made inside the future. 

As we will see that the majority of the present supervised measurement reduction methods are NMF -primarily 

based, both PCA-based totally and manifold-based totally methods are often investigated and in comparison, 

with the triumphing methods. 

 

D. Visualization: 

 

  High-dimensional information is hard to elucidate. In ICU mortality prediction problem [38] there are 

numerous sign functions, and it's hard to interpret them individually way to the excessive dimensionality. As far 

as we all understand, biomedical experts are increasingly confronted with complex high -dimensional records. 

Because the number of dimensions is usually very large, one needs to map them to a smaller number of relevant 
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dimensions to be extra amenable to professional analysis. This is because irrelevant, redundant, and conflicting 

size scan negatively affect the effectiveness and performance of the analytic procedure. This is often additionally 

the so-referred to as curse of dimensionality problem. To have an effect on this problem, dimensionality 

reduction can be a possible means, but the possible mappings from high- to low-dimensional areas are 

ambiguous. Subspace evaluation [84,85] are often wont to are searching for solutions. Since excessive -

dimensional information is tough to interpret, a rough picture of the info is pretty helpful; thus, visualization is 

very critical, and it's also a critical utility of supervised measurement reduction. Barshan. [21] provided a 

supervised PCA to conduct visualization, even as Vlachos. [56] Gave some other supervised dimensionality 

reduction approach by using borrowing the LDA idea for visualization. Geng [58] proposed a supervised 

Isomapto visualize. 

 

IV. POTENTIAL FUTURE RESEARCH ISSUES 

Supervised dimensionality reduction has emerged as a successful technique in much application area during the 

last two decades, still some challenging problems that need to be tackled in the near future? Below, we unfold some 

important open problems worth further exploration. 

A. Scalability 

For PCA-based methods, the time complexity of covariance matrix computation is O (D2 N), and that of its 

eigenvalue decomposition is O (D3). Therefore, the complexity of PCA is O (D2 N + D3). In NMF-based methods, 

due to the additional objective function items some fast solving methods like the projected gradient descent method 

[31] do not work properly, then the time complexity of its most time-costly part is O (tNDd); t is the iteration numbers 

it needs to converge. For manifold-based methods, the time complexity of constructing the similarity matrix is O (N2 D), 

and the frequently-used solving strategy is generalized Eigen value decomposition; the time complexity is O (D3).  

One of the main focused objective of supervised dimensionality reduction is to solve high-dimensional problems, but 

when the feature dimension is high when compared to others, the time costs of the existing supervised dimensionality 

reduction methods are still high, because some specific application which may designed using unsupervised 

dimensionality reduction methods do not work due to the presence of new objective values or constraints on label 

information. When dataset is in large pattern like in social networks, there are millions of data points, and the time cost 

for supervised dimensionality reduction is still unacceptable. Therefore, some specific algorithms directed at 

supervised dimensionality reduction are urgently in need, especially due to the data explosion in this era. 

B. Missing Values problem  

Missing values problems  are a common phenomenon in many applications due to a variety of factors like 

mismatch of results, failure of sensors in computer vision and missing certain laboratory test results over time for 

some patients in the clinical setting [89].  The existing strategy is imputation with zero, the mean, or the maximum 

value, or multiple imputations [90]. To overcome problems by missing values, Lee. [34] Introduced an auxiliary matrix 

to indicate whether the values were missed or not. Obviously, no specific designs are proposed in the supervised 

dimensionality reduction process. Some methods to handle missing values like the E-M algorithm [91] can be 

considered to be incorporated into some supervised dimensionality reduction methods.  

C. Heterogeneous Data 

 Information or Data may contain any form heterogeneous types of features such as numerical, categorical, 

symbolic, ordinal features, etc. So, it is a very important challenge that how we are going to combine these 

different types of data together to perform supervised dimensionality reduction for better usage. A normal way to 

overcome this problem by converting all high dimensional dataset into categorical type. However, many 

information may be lost during this phase.  Additionally, the difference between the continuous values can be 

categorized into the same category is neglected [95, 96]. Therefore, it is very important to analyze how to exploit 

the information within mixed data types which is worth exploring in the near future.   

V. CONCLUSION 

 The field of supervised dimensionality reduction has seen huge growth at an increasing rate. We have 

mentioned the state-of-the-art research on this review by categorizing it into three fundamental classes: PCA-

based, NMF-based, and manifold-based supervised dimensionality reduction methods.  To apprehend their 

characteristics better, we provide an analyzed review to elaborate their benefits and drawbacks. To increase the 

additional development of this topic, we also list some open upcoming troubles waiting for analytic al study in 

the near future.   This review could be beneficial for researchers who need to develop superior supervised 

dimensionality reduction methods or who are searching for techniques to study low-dimensional representation 

for certain supervised learning applications.  



International Journal of Research and Advanced Development (IJRAD), ISSN: 2581-4451 

Special Issue on AICTE Sponsored International Conference on  
Data Science & Big Data Analytics for Sustainability (ICDSBD2020) 
© IJRAD.  

 We accept a truth that supervised dimensionality reduction will continue to stay an active location of look 

at in the years to come, thanks to an increase in the high-dimensional data and sustained community efforts. In 

addition, their tighter integration into precise application systems will continuously structure the emerging 

landscape and provide opportunities for researcher contribution. 
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